Для того, чтобы Лёша мог купаться как можно дольше и успеть при этом дойти до деревни B за 60 минут, ему нужно выбрать маршрут, который будет минимальной длиной. Для этого можно построить треугольник, вершинами которого будут точки, где находятся деревни A и B, а также точка пересечения перпендикуляров, опущенных на берег реки из этих точек.
Из данной информации мы можем определить длины сторон этого треугольника: AB = 3400 м, AC = 3000 м и BC = 2600 м (по теореме Пифагора).
Для того, чтобы найти время, которое Лёша сможет провести в реке, нужно найти время, которое ему потребуется, чтобы пройти расстояние от деревни A до точки C, а затем от точки C до деревни B. Расстояние AC составляет 600 м + 3000 м = 3600 м, а расстояние CB составляет 2600 м. Итак, общее расстояние, которое Лёша должен пройти, составляет 6200 м.
С учетом того, что скорость Лёши составляет 10 км/ч, или 10000 м/ч, время, которое он потратит на преодоление расстояния, составляет:
t = d / v = 6200 м / 10000 м/ч = 0,62 часа = 37,2 минуты.
Значит, Лёша сможет провести в реке не более 60 минут - 37,2 минуты = 22,8 минуты.
Отметим на рисунке наиболее короткий маршрут Лёши:
B
|
|
C----A
Здесь точка C - пересечение перпендикуляров, опущенных из точек A и B на берег реки.
Автор:
calvinxxsxДобавить свой ответ
Предмет:
ЛитератураАвтор:
sebastián48Ответов:
Смотреть