У нас получилась пирамида с апофемой А каждой грани, равной А =17,высота пирамиды неизвестна, обозначим её Н.Если наклонные (т.е. апофемы) равны, а по условию это так, то равны и их проекции на плоскость треугольника. Эти проекции представляют собой радиусы вписанной в треугольник окружности, поскольку они перпендикулярны сторонам треугольника и равны между собой.Радиус вписанной окружности r = √((p -a)(p - b)(p - c)/p)a = 25, b = 29, c = 36полупериметр р = (25 + 29 + 36)/2 = 45r = √(20·16·9)/45 = 8Тогда расстояние от точки до плоскости(высота пирамиды) равнаН = √(А² - r²) = √( 17² - 8²) = 15Ответ: 15 см