• Помогите пожалуйста
    составить уравнение плоскости проходящей через точки A (-3;2;5) и B (4;1;2) параллельно вектору а={2;-1;0}

Ответы 1

  • Составить уравнение плоскости проходящей через точки А (-3,2,5) , В (4,1,2) и параллельно вектору а =(2,-1,0) . Уравнение плоскости, проходящей через точку М (Хо, Уо, Zо) перпендикулярно вектору нормали N(А, В, С) имеет вид А (Х- Хо) +В (У- Уо) +С (Z- Zо) =0. Точка по условию задана, найдем вектор нормали N(А, В, С) . Точки А (-3,2,5) , В (4,1,2) принадлежат плоскости, вектор АВ имеет координаты (4+3,1-2, 2-5) или АВ (7,-1,-3) второй вектор а =(2,-1,0), тогда вектор нормали N(А, В, С) , есть векторное произведение двух векторов АВ (7,-1,-3) и а (2,-1,0). N=АВ х а= матрица i…... j…… k 7....-1……-3 = 2….-1…….0 Разложим матрицу по первой строке I * матрица -1……-3 -1……0 - J* матрица 7.…-3 2…..0+ k* матрица 7…..-1 2…..-1= = -3 *I - 6 *J - 5* k, т. е. Вектор нормали имеет координаты N(-3,-6,-5), точку возьмем любую, например, А (-3,2,5), подставим в уравнение плоскости получим -3(Х+3)-6 (У-2)-5(Z- 5)=0 Раскроем скобки получим, уравнение плоскости -3х-6у-5 Z+28=0
    • Автор:

      buddyrose
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years