• Биссектриса угла при вершине В прямоугольника АВСD пересекает сторону АD в точке К. АК = 5 см, КD = 7 см. Найдите площадь прямоугольника.

Ответы 1

  • Доказываем, что треугольник  BАK равнобедренный и прямоугольный. Т.к. биссектриса делит угол пополам, то прямой ∠ ABC (90°) будет разделен пополам и будет образовывать угол ∠ABК = 45° Соответственно ∠AКВ будет также 45°: ∠AКВ =180° - (∠ ABК + ∠ ВАК ).  Треугольник  BАK  является равнобедренным, т.к. имеет прямой ∠ ВАК (т.к. по условию АВСD прямоугольник), а в основании два равных угла по 45° (∠ ABК  и ∠AКВ). Соответственно катет АВ=АК=5 см.

    далее находим площадь прямоугольника S=АВ*(АК+КD)=5*(5+7)= 60 см

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years