• 1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

     

     

    2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.

     

     

    3. В четырехугольнике ABCD AB + CD=18., а диаметр вписанной в него окружности равен 8. Найдите площадь четырехугольника.

Ответы 1

  •  1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

    Решение.

     Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3

    PABC=AC+CB+AH+HB=2CB+2HB=16+6=22

    Ответ: 22

    2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.

    Решение: 

    S=1/2p*r

    r=2s/p

    Т.к треугольник ABC-равнобедренный, то AB=AC=30

    По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24

    По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)

     

     

     

     

     

     

     

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years