• середины сторон выпуклого четырехугольника последовательно соединены между собой. Какой получился четырехугольник и какова его площадь, если площадь данного параллелограмма равна 16см²

Ответы 1

  • Каждая из сторон полученного четырёхугольника является средней линией в соответствующем треугольнике в котором основание - это диагональ параллелограмма, а боковые стороны - это стороны параллелограмма, значит стороны четырёхугольника равны половинам соответствующих диагоналей исходного параллелограмма.Так как противолежащие стороны четырёхугольника попарно параллельны диагоналям параллелограмма, то противолежащие стороны четырёхугольника параллельны, значит он параллелограмм со сторонами d₁/2 и d₂/2.Углы между соответственно параллельными прямыми равны, значит угол между диагоналями исходного параллелограмма равен углу между сторонами полученного параллелограмма.Площадь исходного параллелограмма через его диагонали: S=(1/2)d₁d₂·sinα.Площадь полученного параллелограмма через его стороны: s=ab·sinα=(d₁d₂/4)·sinα=S/2=16/2=8 см² - это ответ.
    • Автор:

      baldomero
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years