Наименьшее расстояние от точки до прямой - это перпендикуляр, опущенный из этой точки на прямую.Считаем, что циклон движется прямолинейно.Пусть метеостанция находится в точке начала координат М(0;0).Нам даны две точки, находящиеся на прямой движения циклона:С1(-5;24) и С2(-10/3;20).Уравнение прямой, проходящей через две точки:(x-x1)/(x2-x1) = (y-y1)/(y2-y1). В нашем случае:(x-5)/(-10/3-(-5)) = (y-24)/(20-24). Или3(x-5)/5 = (y-24)/(-4). Или 12x+5y-60=0 это уравнение прямой в виде Ax+By+C=0, при А=12, В=5 и С=-60.Итак, 12x+5y-60=0 - уравнение прямой движения циклона.При х=0 y=12, при y=0 х=5.Пусть точка Q(0;12).Рассмотрим треугольники С1РQ и МKQони подобны по острому углу.тогда: МК/С1Р=МQ/C1Q.MQ=24-12=12.C1Q=√(C1P²+PQ²) или С1Q=√(25+144)=13.Тогда:МК/5=12/13. Отсюда МК=12*5/13=60/13≈4,6км.Ответ: Наименьшее расстояние, на которое эпицентр циклона приблизится к метеостанции, равно 4,6км.