Даны точки A и B такие, чо AB=a. Точка C определена равенством AC=3BC(векторы). Найдите геометрическое место точек M плоскости ( в зависимости от a), для которых |MA|^2+2|MB|^2+|MC|^2=20
АС = 3ВС, ВС = х, тогда х+а = 3х, х = а/2. Все три точки расположены на одной прямой АС.
Поместим начало координат в точку А. Тогда точки будут иметь координаты:
А(0;0), В(а;0), С(1,5а;0).
Выберем на плоскости произвольную точку М(х; у). Тогда:
МА^2 = x^2 + y^2
MB^2 = (x-a)^2 + y^2
MC^2 = (x - 1,5a)^2 + y^2
Тогда уравнение, приведенное в условии будет иметь вид:
x^2 + y^2 + 2x^2 - 4ax + 2a^2 +2y^2 + x^2 - 3ax + 2,25a^2 + y^2 - 20 = 0
Приведем подобные члены:
4x^2 + 4y^2 - 7ax + (4,25a^2 - 20) = 0 Или, поделив на 4 и выделив полный квадрат:
(x - (7a/8))^2 + y^2 = 5 +(13/64)a^2
Это уравнение окружности с центром в т. О( (7а/8); 0) и радиусом:
кор(5 +(13/64)a^2)
Автор:
mateogregoryДобавить свой ответ
Даны окружности w1([tex]O_{1}[/tex];7) и w2( [tex]O_{2}[/tex] ;3); O1O2=20. Найдите расстояние между точкой пересечения их общих внутренних касательных и точкой пересечения их общих внешник касательных
Предмет:
ГеометрияАвтор:
barclaypqomОтветов:
Смотреть
Предмет:
Русский языкАвтор:
emmyОтветов:
Смотреть
Составьте каноническое уравнение параболы, проходящей черех точку (5;-1) и имеющей своей директрисой* (именно директрисой) прямую y=5, если известно, что фокус параболы лежит на прямой x=-1.
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
В этом четверостишии спрятолись сложные слова . Найди их и выдели корни .
Самолеты целый час
В небе кувыркаются!
Паровоз вздохнул:
-У нас не получается ....
Напиши свой примеры сложных слов и выдели их корень.
Предмет:
Русский языкАвтор:
dodgeruutsОтветов:
Смотреть