• Даны точки A и B такие, чо AB=a. Точка C определена равенством AC=3BC(векторы). Найдите геометрическое место точек M плоскости ( в зависимости от a), для которых |MA|^2+2|MB|^2+|MC|^2=20

Ответы 1

  • АС = 3ВС, ВС = х, тогда х+а = 3х, х = а/2. Все три точки расположены на одной прямой АС.

    Поместим начало координат в точку А. Тогда точки будут иметь координаты:

    А(0;0), В(а;0), С(1,5а;0).

    Выберем на плоскости произвольную точку М(х; у). Тогда:

    МА^2 = x^2 + y^2

    MB^2 = (x-a)^2 + y^2

    MC^2 = (x - 1,5a)^2 + y^2

    Тогда уравнение, приведенное в условии будет иметь вид:

     x^2 + y^2 + 2x^2 - 4ax + 2a^2 +2y^2 + x^2 - 3ax + 2,25a^2 + y^2 - 20 = 0

    Приведем подобные члены:

    4x^2 + 4y^2 - 7ax + (4,25a^2 - 20) = 0   Или, поделив на 4 и выделив полный квадрат:

    (x - (7a/8))^2  +  y^2  = 5 +(13/64)a^2

    Это уравнение окружности с центром в т. О( (7а/8); 0) и радиусом:

    кор(5 +(13/64)a^2)

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years