• В параллелограмме ABCD один из углов на 60 больше другого . Найдите длину меньшей диагонали данного параллелограмма, если его стороны равны 9 и 7

Ответы 1

  • пусть один угол равен х, тогда другой равен 60+х. Сумма углов при одной боковой стороне равна 180. Таким 0бразом х+Х+60=180. отсюда х=60. Получаем, что углы параллелограмма равны 60, 60, 120 и 120.Проведя меньшую диагональ мы разделим параллелограмм на два треугольника. В треугольнике АВД АВ=7, АД=9, угол а=60. По теореме косинусов ВД²=АВ²+АД²-2*АВ*АД*cos а.BД²=49+81-2*63*1/2ВД²=130-63=67ВД=√67
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years