Точка М принадлежит одной из двух взаимно перпендикулярных плоскостей, точка N – другой из них. Расстояние от данных точек до линии пересечения плоскостей: |MM1| = 14 см ; |NN1| = 7 см Найти |m1n1|, если |MN|=21 см.
Предмет:
ГеометрияАвтор:
wesdrftgjjj1) ΔMM₁N - прямоугольный (NM₁⊥k, ∠MM₁N = 90°), следовательно используем по теореме Пифагора:
MN² = MM₁² + M₁N² ⇒ M₁N = √MN² - MM₁²
M₁N = √(21 см)² - (14 см)² = √625 см² - 324 см² = √301 см² = √301 см
2) Рассмотрим ΔM₁N₁N:
MM₁⊥k, и NN₁⊥k ⇒ NN₁⊥MN₁ |
∠M₁N₁N = 90° | ⇒ ΔM₁N₁N - прямоугольный.
NM₁² = NN₁² + N₁M₁² - теорема Пифагора, следовательно:
N₁M₁ = √NM₁² - NN₁² = √(√301 см)² - 11 см² = √301 см² - 121 см² = √180 см² = √36×5 см² = 6√5 см
Автор:
Fedoseewa27Добавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть