Введём обозначение сторон данного треугольника, х – боковая сторона, у – основание равнобедренного треугольника. Находим боковую сторону: х = 30 + 25 = 55 (см). На основании свойства биссектрисы треугольника запишем отношение: 25 / 30 = х / у; 25/30 = 55 / у. Выразим и найдём у - основание: у = 30 * 55 / 25 = 1650 / 25 = 66 (см). Находим радиус описанной окружности по формуле: R = х² / √((2х)² - у²) = 55² / √(110² - 66²) = 3025 / 88 = 34,375 (см). Ответ: радиус описанной окружности равен 34,375 см.
Автор:
heribertomatthewsДобавить свой ответ
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть