• Найдите периметр и площадь сектора круга, радиус которого 15 см, если дуга сектора содержит 54 градуса

Ответы 1

  • Используя формулу l = 2πr, где l — длина окружности, r — радиус окружности, π — число пи, находим длину данной окружности.

    Согласно условию задачи, радиус данного круга равен 15 см, следовательно, длина окружности l составляет:

    l = 2π * 15 = 30π см.

    Используя формулу S = πr^2, где S — площадь круга, r — радиус круга, π — число пи, находим площадь данного круга:

    S = π15^2 = 225π см^2.

    Найдем периметр и площадь сектора.

    По условию задачи, дуга сектора содержит 54°.

    Так как вся окружность содержит 360°, а длина окружности равна 30π см, то длина дуги сектора равна 30π * 54 / 360 = 4.5π см.

    Следовательно, периметр сектора составляет:

    15 + 15 + 4.5π = 30 + 4.5π см.

    Площадь сектора составляет:

    S * 54 / 360 = 225π * 54 / 360 = 33.75π см^2.

    Ответ: периметр сектора равен 30 + 4.5π см, площадь сектора равна 33.75π см^2.

     

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years