• Биссектрисы углов А и В параллелограмма АВСD пересекаются в точке Е. Найдите площадь параллелограмма, если ВС = 12 см,

Ответы 1

  • Для решения рассмотрим рисунок (https://bit.ly/2Ei2YKn).

    Через точку Е проведем прямую МК параллельную основаниям ВС и АД.

    Рассмотрим треугольники ЕВН и ЕВМ. Оба треугольника прямоугольные, гипотенуза ВЕ у треугольников общая, а угол ЕВН = ЕВМ так как ВЕ биссектриса угла АВС, тогда треугольники ЕВН и ЕВМ равны по гипотенузе и острому углу, а следовательно МЕ = НЕ = 9 см.

    Аналогично, прямоугольные треугольники АЕН и АЕК равны по гипотенузе и острому углу, а следовательно, КЕ = НЕ = 9 см.

    Тогда высота параллелограмма МК = МЕ + КЕ = 9 + 9 = 18 см.

    Определим площадь параллелограмма. Sавсд = ВС * МК = 12 * 18 = 216 см2.

    Ответ: Площадь параллелограмма равна 216 см2.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years