• В трапеции ABCD основания BC и AD относятся как 1:3. Найдите площадь трапеции, если площадь треугольника BCD равна 2

Ответы 1

  • Для решения рассмотрим рисунок (https://bit.ly/2CAvQA8).

    Пусть длина меньшего основании трапеции будет Х см, тогда, по условию, длина большего основания будет 3 * Х см.

    Проведем высоту ДМ к меньшему основанию трапеции.

    Тогда площадь треугольника ВСД будет равна: Sвсд = ВС * ДМ / 2 = Х * ДМ / 2 = 2 см.

    Так как высота ДМ равна высоте ВН, то Sвсд = Х * ВН / 2 = 2 см.

    Определим площадь треугольника АВД.

    Sабд = АД * ВН / 2 = 3 * Х * ВН / 2.

    В площади треугольника АВД произведение (Х * ВН / 2) – это площадь треугольника ВСД, которая равна 2 см2.

    Тогда Sабд = 3 * Sвсд = 6 см2.

    Тогда Sтрапеции = Sавд + Sвсд = 6 + 2 = 8 см2.

    Ответ: Площадь трапеции равна 8 см2.

    • Автор:

      jean
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years