• высота конуса равна 12 периметр осевого сечения равен 36 вычислите объем конуса

Ответы 1

  • Для решения рассмотрим рисунок (https://bit.ly/2TeR6Dk).

    Пусть радиус окружности равен Х см, а образующая конуса равна У см.

    Тогда в прямоугольном треугольнике АОС, по теореме Пифагора,

    Х2 + ОС2 = У2.

    Х2 + 144 = У2. (1).

    По условию, периметр осевого сечения равен 36 см.

    Тогда 2 * У + 2 * Х = 36.

    У + Х = 18. (2).

    Решим систему из уравнений 1 и 2.

    У = 18 – Х.

    Х2 + 144 = (18 – Х)2.

    Х2 + 144 = 324 – 36 * Х + Х2.

    36 * Х = 324 – 144 = 180.

    Х = R = ОА = 5 см.

    У = АС = ВС = 18 – Х = 18 – 5 = 15 см.

    Определим объем конуса.

    V = π * R2 * ОС / 3 = π * 25 * 12 / 3 = π * 100 см3.

    Ответ: Объем конуса равен π * 100 см3.

    • Автор:

      burch
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years