• В треугольнике ABC проведена медиана BE.Найти угол А и угол B ,если известно,что BE=1/2AC и угол C=50 градусов.

Ответы 1

  • 1. Введём обозначение угла символом \"∠\".

    2. АЕ = СЕ, так как ВЕ медиана.

    3. ВЕ = 1/2 АС. Следовательно, ВЕ = СЕ = АЕ, то есть, треугольники СВЕ и АВЕ

    равнобедренные.

    4. ∠ВСЕ и ∠СВЕ равны как углы при основании равнобедренного треугольника. Значит,

    ∠СВЕ = 50°.

    5. ∠АВЕ = 180° - 50° - 50° = 80°.

    6. ∠АЕВ = 180° - 80° = 100°

    7. ∠ВАЕ и ∠АВЕ равны как углы при основании равнобедренного треугольника.

    8. ∠ВАЕ = ∠АВЕ = (180° - 100°) : 2 = 40°.

    9. ∠В = 40° + 50° = 90°.

    Ответ: ∠А = 40°, ∠В = 90°.

    • Автор:

      mariodunn
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years