Будем доказывать данное утверждение от обратного, а именно, предположим, что существует такой треугольник, длины сторон которого равны а, b и с, такой что его полупериметр меньше длины одной из его сторон.
Пусть такой стороной является сторона с.
Тогда должно выполняться следующее неравенство:
(а + b + c) / 2 < c.
Упрощая данное неравенство, получаем:
а + b + c < 2c;
а + b < 2c - c;
а + b < c.
Следовательно, в данном треугольнике сумма длин сторон а и b меньше длины стороны с.
Однако во всяком треугольнике сумма длин любых его двух сторон всегда больше длины третьей стороны.
Следовательно, мы пришли к противоречию, что говорит о том, что во всяком треугольнике его полупериметр больше длины каждой из его сторон.
Автор:
katem0jeДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Знайди корінь рівняння: –x = –5
Предмет:
МатематикаАвтор:
go_fox9Ответов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть