• В окружности проведены две хорды AB и CD, пересекающиеся в точке М, МВ=10, АМ=12, DC=23. Найдите длины СМ и DM.

Ответы 1

  • Для решения рассмотрим рисунок (https://bit.ly/2E0gJOW).

    При пересечении двух хорд произведение длин отрезков, образованных точкой пересечения, одной хорды, равно произведению длин отрезков другой хорды.

    АМ * ВМ = СМ * ДМ.

    Пусть длина отрезка СМ = Х см, тогда ДМ = (23 – Х) см.

    12 * 10 = Х * (23 – Х).

    120 = 23 * Х – Х2.

    Х2 – 23 * Х + 120 = 0.

    Решим квадратное уравнение.

    Х1 = 8 см.

    Х2 = 15 см.

    Если СМ = 8 см, ДМ = 15 см.

    Если СМ = 15 см, ДМ = 8 см.

    Ответ: Длины отрезков равны 8 и 15 см.

    • Автор:

      izzylu0i
    • 2 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years