• Высота прямокутного трыкутныка проведена до гипотенузы дилыть ии на відрізки завдовжки 32 см и 18 см Знайдить суму катетив AC+CB трыкутныка

Ответы 1

  • Ответ:Держи)

    Объяснение:Застосуємо теорему Піфагора до обох маленьких прямокутних трикутників, отримаємо:

    $(AC)^2 = (AD)^2 + (CD)^2 = 32^2 + (CB)^2$

    $(CB)^2 = (BD)^2 + (CD)^2 = 18^2 + (AC)^2$

    Підставимо перше рівняння у друге:

    $(CB)^2 = 18^2 + (32^2 + (CB)^2)$

    Розв'яжемо це рівняння щодо $(CB)^2$:

    $(CB)^2 - (CB)^2 = 32^2 + 18^2$

    $(CB)^2 = 1220$

    CB = $\sqrt{1220}$

    Тепер підставимо це значення в перше рівняння:

    $(AC)^2 = 32^2 + (\sqrt{1220})^2$

    $(AC)^2 = 32^2 + 1220$

    $(AC)^2 = 2116$

    AC = $\sqrt{2116} = 46$

    Таким чином, сума катетів дорівнює:

    AC + CB = 46 + $\sqrt{1220}$ ≈ 76.44 см (заокруглюючи до двох знаків після коми).

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years