• 13. В окружности с центром О проведена хорда АВ. ОС- радиус окружности, перпендикулярный к АВ. Докажите, что луч СО- биссектриса угла АСВ.

     

Ответы 1

  • Радиус, перпендикулярный хорде, делит её пополам.

    Пусть т.К - точка пересечения СО и АВ. Значит АК=КВ. Рассмотрим треугольники СКА и СКВ: они прямоугольные и у них катет СК - общий, а катеты АК и КВ равны. Тр-ки равны по двум катетам, значит равны и соответствующие углы: АСК и ВСК, а это значит, что СО - бис-са угла АСВ.

    можно так сделать вывод: Перпендикуляр, проведенный из центра окружности к хорде, делит ее на равные части. По этой причине часть радиуса внутри треугольника АВС является его высотой, медианой и биссектрисой.

    • Автор:

      salas
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years