• Основания трапеции равны 8 и 12, а один из острых углов 30 градусов. Продолжение боковых сторон пересекаются под углом в 90 градусов. Найдите высоту трапеции.

Ответы 1

  • Начертив чертёж получаем два подобных прямоугольных треугольника .

    Сначала находим боковую сторону против угла  30 гр. , она равняется половине большего основания, т.к. лежит противугла sin 30=1/2, и так 12/2= 6 см.

    Другая боковая сторона треугольника по Пифагору равна a^2=c^2-b^=144-36=108 => a=√108=6*√3 см. Находим высоту треуголника H= (1/2)*6*√3 =3*√3 см." (Высота делит треугольник на два подобных, составляем соотношение между сторонами двух подобных  треугольниках относительно высоты , получаем HD -часть основания большего основания. HD/3*√3=6/6*√3=> HD=3 см, вторая часть основания равна AH= 12-3=9 см.)" Из треугольника BEC находим EC =BC/2=8/2=4 см,CD= 6-4=2 см.Высота трапеции равна H1=CC1=sin30*2=(√3/2)*2=√3 см.

    Ответ: H1=√3 см

    P.S. Действия выше в скобках взятые в кавычки излишние

    • Автор:

      elena97
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years