• Из точки отстоящей от плоскости на 10 см, проведены 2 наклонные, составляющие с плоскостью углы 30 и 45 градусов, угол между их проекциями на эту плоскость равны 30 градусам, Найти расстояние между основаниями наклонных.

Ответы 1

  • Сделаем рисунок. Проекция СН наклонной АС равна расстоянию от А до плоскости, т.к.АНС - равнобедренный прямоугольный треугольник.Проекцию ВН наклонной АВ найдем из прямоугольного треугоьника АВН, где гипотенуза А вдвое больше АН, который противолежит углу 30 градусов. На плоскости имеем треугольник со сторонами 10, 10√3, углом 30 градусов между ними и стороной, которую надлежит найти.

    Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними:a² = b² + c² — 2bс · cos α

    сos (30°) = cos (π/6) = (√3)/2

    ВС²=300+100 -200√3·(√3)/2=

    ВС²=400 -300=100ВС=√100=10 см

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years