• Дана правильная четырехугольная пирамида со стороной основания 2 корня из 6. Боковое ребро пирамиды наклонено к плоскости основания мое углом 60градусов. Найдите объем вписанного в пирамиду конуса

Ответы 1

  • В основании пирамиды - квадрат. Радиус основания вписанного в пирамиду конуса - это радиус вписанной в квадрат окружности, то есть половина стороны:

    r = √6;

    Проекция бокового ребра на основание - это половина диагонали квадрата, то есть она равна (2*√6)*(√2/2) = √12 = 2*√3; поскольку угол наклона бокового ребра 60 градусов, высота пирамиды равна  (2*√3)*tg(60) = 2*√3*√3 = 6;

    Объем конуса

    V = (pi/3)*(√6)^2*6 = 12*pi;

    • Автор:

      shea
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years