• В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четывре раза больше площади треугольника BOC.

Ответы 2

  • Вспомните, что диагонали параллелограмма точкой пересечения делятся пополам. Площади обраовавшихся треугольников равны. См. вложение

    answer img
    • Автор:

      angelhceq
    • 5 лет назад
    • 0
  • Диагонали параллелограмма делятся при пересечении пополам.

    Без проблем можно доказать, что тр-к АВО = тр-ку СОD, а тр-к ВОС=тр-ку АОD по двум сторонам и углу между ними. Рассмотрим тр-к АОВ и ВОС, площадь тр-ка равна половине произведения основания на высоту. Основания этих тр-ков равны, а высота общая. Значит их площади равны. Из выше сказанного следует, что площади всех четырех труугольников равны между собой. Т.е. площадь параллелограмма в 4 раза больше площади тр-ка.

    answer img
    • Автор:

      loveruo1z
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years