Текстовая задача – это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести ее на язык математических действий, т.е. построитьматематическую модель.Вообще, математическая модель – это описание какого-либо реального процесса на математическом языке.Математической моделью текстовой задачи является выражение (либо запись по действиям), если задача решается арифметическим методом, иуравнение (либо система уравнений), если задача решается алгебраическим методом.В процессе решения задачи четко выделяются три этапа математического моделирования:1 этап – это перевод условий задачи на математический язык; при этом выделяются необходимые для решения данные и искомые и математическими способами описываются связи между ними;2 этап – внутримодельное решение (т.е. нахождение значения выражения, выполнение действий, решение уравнения);3 этап – интерпретация, т.е. перевод полученного решения на тот язык, на котором была сформулирована задача.Проиллюстрируем сказанное на примере решения алгебраическим методом следующей задачи: «В одном вагоне электропоезда было пассажиров в 2 раза больше, чем в другом. Когда из первого вагона вышли 3 человека, а во второй вагон вошли 7 человек, то в обоих вагонах пассажиров стало поровну. Сколько пассажиров было в каждом вагоне первоначально?»Обозначим через х первоначальное число пассажиров во втором вагоне. Тогда число пассажиров в первом вагоне – 2х. Когда из первого вагона вышли 3 человека, в нем осталось 2х – 3 пассажира. Во второй вагон вошли 7 человек, значит, в нем стало х + 7 пассажиров. Так как в обоих вагонах пассажиров стало поровну, то можно записать, что 2х – 3 = х + 7. Получили уравнение – это математическая модель данной задачи.Следующий этап – решение полученного уравнения вне зависимости от того, что в нем обозначает переменная х: переносим в левую часть члены уравнения, содержащие х, а в правую – не содержащие х, причем у переносимых членов знаки меняем на противоположные: 2х – х = 7 + 3. Приводим подобные члены и получаем, что х = 10.Последний, третий этап – используем полученное решение, чтобы ответить на вопрос задачи: во втором вагоне было первоначально 10 человек, а в первом – 20 (10·2=20).Наибольшую сложность в процессе решения текстовой задачи представляет перевод текста с естественного языка на математический, т.е. 1 этап математического моделирования. Чтобы облегчить эту процедуру, строят вспомогательные модели – схемы, таблицы и др. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной (схемы, таблицы, рисунки и т.д.); от нее – к математической, на которой и происходит решение задачи. Такой подход к процессу решения задачи разделяют и психологи. Они считают, что процесс решения задачи есть сложный процесс поиска системы моделей и определенной последовательности перехода от одного уровня моделирования к другому, более обобщенному, что решение задачи человеком есть процесс ее переформулирования. При этом используется такая операция мышления, как анализ через синтез, когда объект в процессе мышления включается во все новые связи и в силу этого выступает во все новых качествах. Главным средством переформулирования является моделирование.уточняйте ответ если не правильно