Дополним усеченную пирамиду до полной. Так как в правильной пирамиде высота проходит через центр окружности, вписанной в основание, то О и О1 — центры окружностей, вписанных в АВС и А1В1С1. Проведем SK⊥AC, а значит, и SK1⊥A1C1. Тогда
по теореме о трех перпендикулярах ОК⊥АС и OK1⊥A1C1. Значит, ОК и O1K1 — радиусы окружностей, вписанных в правильные треугольники ABC и A1B1C1. Далее, проведем K1H⊥KO. Тогда K1O1OH — прямоугольник, значит, К1Н = ОО1 Так как ∠K1KH является линейным углом двугранного угла между основанием и боковой гранью, то ∠K1KH = 60° (по условию). ОО1 = К1Н = 2 см Ответ: 2 см. _Помогла? - Не забывайте сказать "Спасибо"!Успехов в учебе!