Ответы 1

  • Решаем интеграл вида: \int \frac{1}{x^2+16}dxИспользуем замену:x=4u:\quad \quad dx=4duПолучаем: =\int \frac{1}{\left(4uight)^2+16}4du=\int \frac{1}{4u^2+4}du=\int \frac{1}{4\left(u^2+1ight)}du=\frac{1}{4}\int \frac{1}{u^2+1}du=\frac{1}{4}\arctan \left(uight)Делаем обратную замену: u=\frac{1}{4}xПолучаем: =\frac{1}{4}\arctan \left(\frac{1}{4}xight)=\frac{\arctan \left(\frac{x}{4}ight)}{4}+C
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years