• помогите пожалуйста....умоляю

    задания во вложении

    question img

Ответы 1

  • 1.a)\quad\log_{\frac12}16=\log_{2^{-1}}16=-\log_22^4=-4\\ b)\quad5^{1+\log_53}=5\cdot5^{\log_53}=5\cdot3=15\\ c)\quad\log_3135-\log_320+2\log_36=\log_3{\frac{135}{20}}+\log_36^2=\\=\log_3\frac{135}{20}\cdot36=\log_3243=\log_33^5=5

    2. См. вложение - красным цветом первый график, зелёным второй.

    3.\quad\log_{0,5}(x^2-3x)=-2\\ OO\Phi:\quad x^2-3x>0\\ x(x-3)=0\\ x=0,\quad x=3\\ x^2-3x>0\Rightarrowx\in(-\infty,0)\cup(3,+\infty)\\ \log_{\frac12}(x^2-3x)=-2\\ \log_{2^{-1}}(x^2-3x)=-2\\ -\log_{2}(x^2-3x)=-2\\ \log_{2}(x^2-3x)=2\\ x^2-3x=4\\ x^2-3x-4=0\\ D=9+4\cdot4=25=25^2\\ x_1=4,\quad x_2=-1\\ 4.\quad\log_4(x+1)<\log_4(2x-5)\\ OO\Phi:\quad\\ \begin{cases} x+1>0\\ 2x+5>0 \end{cases}\Rightarrow\begin{cases} x>-1\\ x>-2,5 \end{cases}\Rightarrow x>-1\\ x+1<2x-5\\ x>6

    5.\quad\log_2(x-2)+\log_2x=3\\ OO\Phi:\\ \begin{cases} x-2>0\\ x>0 \end{cases}\Rightarrow \begin{cases} x>2\\ x>0 \end{cases}\Rightarrow x>2\\ \log_2(x-2)+\log_2x=\log_2(x-2)x\\ \log_2(x-2)x=3\\ x^2-2x=8\\ x^2-2x-8=0\\ D=4+4\cdot8=36 = 6^2\\ x_1=4,\quad x_2=-2<2\\ x=4\\

    6.\quad\log_3^2x-2\log_3x\leq3\\ OO\Phi:x>0\\ \log_3^2x-2\log_3x-3\leq0 \log_3x=t,\quad\log_3^2x=t^2,\quad t>0\\ t^2-2t-3\leq0\\ t^2-2t-3=0\\ D=4+4\cdot3=16=4^2\\ t_1=3,\quad t_2=-1<=0\\ t\leq3\Rightarrow t^2-2t-3\leq0\\ t\geq3\Rightarrow t^2-2t-3\geq0\\ t\in(-\infty,3]

    Решение изначального неравенства сводится к решению неравенства

    \log_3x\leq3\\ x\geq27

    answer img
    • Автор:

      pennytcgk
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years