•  

    Разность между шестым и четвертым членами геометрической прогрессии равна 72, а между пятым и третьим равна 36. Найдите сумму восьми первых членов этой прогрессии.

      765   684   823   129    

Ответы 1

  • Формула для суммы первых n членов геометрической прогрессии:

    Sn = b₁·(q^n - 1)/(q - 1)

    Для 8 членов геометрической прогрессии

    S₈ = b₁·(q⁸ - 1)/(q - 1)

    Формула для n-го члена геометрической прогрессии:

    bn = b₁·q^(n-1)

    n = 6    b₆ = b₁·q⁵

    n = 4    b₄ = b₁·q³

    n = 3    b₃ = b₁·q²

    По условию:

    b₆ -  b₄  = 72

    b₃ -  b₁  = 9

    или

    b₁·q⁵ -  b₁·q³  = 72   

    b₁·q² - b₁ = 9           

    Преобразуем эти выражения

    b₁·q³·(q² - 1) = 72     (1)

    b₁·(q² - 1) = 9            (2)

    Разделим (1) на (2) и получим

    q³ = 8, откуда

    q = 2

    Из (2) найдём b₁

    b₁ = 9/(q² - 1) = 9/(4 - 1) = 3

    Подставим q = 2 и b₁ = 3 в S₈ = b₁·(q⁸ - 1)/(q - 1)

    S₈ = 3·(2⁸ - 1)/(2 - 1) = 3·(256 - 1) = 765

    Ответ: S₈ = 765

    Вот так вот это надо решать

    • Автор:

      willow41
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years