• Уравнение геометрического места точек плоскости равноудалённых от двух прямых y=-2x+10 и y=-2x-6, имеет вид

Ответы 1

  • Решение. Прямые y = −2x + 10 и y = −2x − 6 параллельны. Следовательно, все точки, равноудаленные от этих прямых, лежат на прямой, параллельной им и заданной уравнением y = −2x + b. Чтобы найти b, достаточно указать одну точку, равноудаленную от прямых y = −2x + 10 и y = −2x − 6. Эти прямые пересекают ось OX соответственно в точках (5; 0) и (−3; 0). Следовательно, точка (−1; 0) равноудалена от заданных прямых и должна принадлежать прямой y = −2x + b. Подставив y = 0, x = −1, получим b = −2, и уравнение геометрического места точек имеет вид y + 2x + 10 = 0.
    • Автор:

      pebbles
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years