ДАНОФункция Y = x⁴ - 4x² +4ПРОВЕСТИ ИССЛЕДОВАНИЕРЕШЕНИЕ.1. Область определения - X∈|R-∞,+∞) - разрывов нет - непрерывная.2. Точки пересечения с осью Х - X1= -√2~-1.4 и Х2 = +√2 ~1.43. Точка пересечения с осью У - У(0)=4.4. Поведение в бесконечностиУ(-∞)=+∞ и У(+∞)=+∞5. Исследование на четностьУ(х) = У(-х) - функция четная.6. Первая производная функции - поиск экстремумов.Y' = 4x³-8x = 4*x*(x²-2)7, Точки экстремума = корни производной.x1= -√2, x2= 0, x3= √2, 8. Максимум - Y(0)=4минимум - Y(-√2)=0 и Y(√2)=0.9. Исследование на монотонностьУбывает - Х∈(-∞,-√2]∪[0,√2]Возрастает - Х∈[-√2,0]∪[√2,+∞)10. Вторая производная - точки перегиба.Y" = 12x²- 8 = 0x1= -√(2/3) ~ -0,82 x2=+√2/311. Вогнутая - Х∈(-∞,х1]∪[x2,+∞)Выпуклая - Х∈[x1,x2]КомментарийНа графиках- производные выполнены в масштабе, чтобы увидеть корни.