• На 100 карточек написаны числа от 1 до 200. На каждой карточке по 2 числа: одно четное и одно не чётное, отличающаяся на 1. Вася выбрал 21 карточку. Могла ли сумма 42-х чисел на них оказаться равной 2017

Ответы 1

  • Обратим внимание на два момента 1. числа натуральные от 1 до 200 2. Числа четное и нечетное на карточке, отличаются на 1. Есть одно разложение этих чисел на сто карточек1-2, 3-4, 5-6, ..... 197-198, 199-200 итого сто пар - других разложений нет , иначе бы не выполнялся пункт что разница на каждой карточке равна 1Сумма на карточках 3 (1*4-1), 7 (2*4-1), 11 (3*4 -1), ....   395 (99*4-1), 399 (4*100-1) то есть можно вывести общую формулу 4*k-1 (k⊂[1 100]) Надо теперь определить сумма 21-ой карточки равно 2017 или нет сложим 21 карточку (4*k₁-1)+(4*k₂-1)+(4*k₃-1)+...+(4*k₂₀-1)+(4*k₂₁-1)=20174*(k₁+k₂+k₃+...+k₂₀+k₂₁)-21=20174*(k₁+k₂+k₃+...+k₂₀+k₂₁)=2038k₁+k₂+k₃+...+k₂₀+k₂₁= 2038/4 = 509.5не может быть , так как слева сумма натуральных чисел и сумма натуральное число, а справа дробь 
    • Автор:

      jonah4e2f
    • 4 года назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years