Найти:длину ребра А1А2;угол между ребрами А1А2 и А1А4;площадь грани А1А2А3;уравнение плоскости А1А2А3.объём пирамиды А1А2А3А4.2.10. А1 ( 6; 6; 5), А2 ( 4; 9; 5), А3 ( 4; 6; 11), А4 ( 6; 9; 3).Решение: 1. Находим длину ребра А1А2Длина ребра А1А2 равна расстоянию между точками А1 и А2или модулю вектора . Расстояние между точкамиА1(x1;y1;z1) и А2 (x2;y2;z2) вычисляется по формуле:подставим в эту формулу координаты точек и получим: единиц2. Угол между ребрами А1А2 и А1А4 обозначим и вычисляем по формуле:;где  = ; = ; находим координаты векторов, для этого вычитаем из координат конца координаты начала :подставляем координаты векторов в формулу и считаем cos?:; (градусов).3. Площадь грани (треугольника) А1А2А3 находим используя свойства скалярного произведения: площадь параллелограмма, построенного на векторах и численно равна модулю их векторного произведения. Площадь треугольника равна половине площади параллелограмма: Сначала находим координаты векторов:находим их произведение: и вычисляем площадь грани: кв.единиц4. Уравнение плоскости A1A2A3 найдем как уравнение плоскости, проходящей через три данные точки A1; A2иA3:подставим координаты точек A1; A2иA3 .вычислив определитель матрицы получаем уравнение: сокращая уравнение на 6 получим уравнение плоскости: 5. Объем пирамиды A1A2A3A4 равен одной шестой смешанного произведения трех векторов модуль которого числено равен объему праллелепипеда, построенного на этих векторах.Выразим произведение трех векторов через координаты сомножителей: составим из координат векторов и решим матрицу: куб.единицыОтветы:длина ребра А1А2 равна единиц.угол между ребрами А1А2 и А1А4:(градусов).площадь грани А1А2А3  кв.единицуравнение плоскости А1А2А3: объём пирамиды А1А2А3А4 равен 4 куб.единицы.