• Точка дотику кола,вписано в прямокутний трикутник ,ділить гіпотенузу на відрізки завдовжки 4 і 6 см .Знайдіть периметр трикутника

Ответы 1

  • Нехай АСВ - прямокутний трикутник, кут С прямий, О - центр вписаного в трикутник кола, K,T,N - точки дотику відповідно зі сторонами АВ, ВС, АС.АК=4 см, ВК=6смOK=ON=OT=CN=CT=r - радіус вписаного колаAN=AK=4 смBT=BK=6 смГіпотенуза АВ=АК+ВК=4+6=10 смПо теоремі Піфагора AC^2+BC^2=AC^2(4+r)^2+(6+r)^2=10^216+8r+r^2+36+12r+r^2=1002r^2+20r+52-100=02r^2+20r-48=0r^2+10r-24=0(r+12)(r-2)=0r+12=0; r_1=-12<0 - не підходить, радіус не может приймати відємне значенняr-2=0;r_2=2;r=2Катети дорівнюють АС=AN+CN=4+2=6 смBC=CT+BT=2+6=8 смПериметр трикутника дорівнює P(ABC)=AB+BC+AC=10+8+6=24 смвідповідь: 24 см
    answer img
    • Автор:

      erin79
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years