• 3^x=10-log[2,x] (три в степени х равно десять минус логарифм х по основанию два)

Ответы 1

  • 3^x = 10 - log2 (x)Аналитически не получается  у меня. Только методом подбора. Область допустимых значений определяется логарифмом x > 0. Левая часть всегда положительна, значит, log2 (x) > 0, и x > 1. Иначе в промежутке (0; 1) левая часть изменяется от 1 до 3, а правая больше 10.Попробуем подставить x = 2, 3^2 = 10 - log2 (2) = 9. равенство выполняется. Т.о. x = 2 является корнем уравнения.Но м.б. есть ещё решения?Для ответа на этот вопрос построим графики функцийy = 3^x и y = 10 - log2 (x)График y = 3^x пересекает ось Оу в точке у=3. Влево, в область отрицательных значений икс, график стремится к нулю. Вправо, в область положительных значений икс, график стремится к бесконечности.Рассмотри график y = log2 (x). Он нигде не пересекается с графиком y=3^x. Он пересекает ось Ох а точке х=1. Влево он стремится к минус бесконечности, не пересекая ось игрек. Вправо график стремится к бесконечности. Перевернём график: y = -log2 (x). Тут ситуация меняется. Хотя он по-прежнему пересекает ось икс в точке х=1, этот график теперь пересекает график 3^x, т.к. влево он бесконечно стремится к плюс бесконечности к оси игрек, а вправо стремится в минус бесконечность. Смещение графика вверх по оси игрек на 10 ситуацию не меняет y=10-log2 (x).Итак, имеется только одно пересечение этих графиков, и одно решение:x = 2.
    • Автор:

      izzyrbns
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years