Обозначим точку пересечения биссектрис буквой О. Обратим внимание на две параллельные прямые ВС и МNОни пересекаются:1) Секущей ВВ1.При этом образуются равные накрестлежащие углы СВО и ВОМ по свойству параллельных прямых и секущей.Но ∠ СВО=∠ВОМ по условию задачи. Отсюда ᐃВМО - равнобедренный. МО=МВ2) Секущей СС1.При этом образуются равные накрестлежащие углы ВСО и СОN по свойству параллельных прямых и секущей.Но ∠ОСN=∠ВОС по условию задачи. ᐃ ОСN - равнобедренный и ОN=NСИз этого следует, что МО+ОN=ВМ+СN, иначе МN=ВМ+СN, что и требовалось доказать.