• Определите вид треугольника, если его вершины точки A(1;-2;3), B(2;1;0). C(1;-1;2).

Ответы 3

  • Спасибо большое, ты бог
    • Автор:

      figaro
    • 6 лет назад
    • 0
  • Ответ: ∆АВС тупоугольный.Решение прилагаю.
    answer img
  • Найдём длины всех сторон треугольника.AB= \sqrt{(2-1)^2+(1+2)^2+(0-3)^2} = \sqrt{1+9+9} = \sqrt{19}  \\ AC= \sqrt{(1-1)^2+(-1+2)^2+(2-3)^2} = \sqrt{0+1+1} = \sqrt{2}  \\ BC= \sqrt{(1-2)^2+(-1-1)^2+(2-0)^2} = \sqrt{1+4+4} = \sqrt{9}=3 AB² = 19BC² + AC² = 9 + 2 = 1119 > 11   ⇒   AB² > BC² + AC²   ⇒   ΔABC - тугоугольный
    answer img
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years