• Используя метод математической индукции, докажите следующие утверждения:

    question img

Ответы 3

  • что именно вам не понятно в трельем?
  • 1) Во-первых, проверим, является ли предложение истинным.1^2 = (1/3*1)(4*4*1 - 1) = 1/3 * 3 = 1, следовательно является.Во-вторых, проверим, остается ли.3^2 = 9; (1/3)*2(16-1) = 9+1(первое) следовательно остается, следовательно - правильно2) Во-первых, проверим, является ли предложение истинным.(1^2)/(1*3) = (1*(1+1))/(2*(2*1 +1)) = 2/6 =1/3, следовательно является.Во-вторых, проверим, остается ли.(2^2)/(3*5) = 4/15; (2*(2+1))/(2*(2*2 + 1)) = 4/15 + 1/3 (первое) = 6/10, следовательно является3) Не понятна распечатка, следовательно не могу выполнить задание
    • Автор:

      macey4mvt
    • 6 лет назад
    • 0
  • 1) Для n=1 верно.Пусть верно для Н. Докажем, что верно для Н+1Сумму обозначим С(Н).C(H)=4H^3/3-H/3 С(Н+1)=1/3*(Н)*(4Н*Н-1)+(2Н+1)^2=4H^3/3-H/3+4H^2+4H+1=4/3*(H^3+3H^2+3H+1)-(H+1)/3=4(H+1)^3/3-(H+1)/3, что и требуется.2) Для n=1 верно.Пусть верно для Н. Докажем, что верно для Н+1Сумму обозначим С(Н)  С(Н+1)=(H^2+H)/(2*(2H+1))+H*H/((2H+1)*(2H+3))=((H+1)^2+(H+1)/(2*(2H+3)) последнее получается простыми преобразованиями и доказывает утверждение.3) Для n=1 верно.3^3+2^3=27+8 на 7 делится.Обозначим сумму С(Н)   и пусть  она на 7 делится.С(Н+1)=3^(2H+3)+2^(H+3)= 9*(3^(2H+1)+2^(H+1)*4/9)=9*(3^(2H+1)+2^(H+1)+2^(H+1)*2/9-2^(H+1))=9C(H)+2*2^(H+1)-9*2^(H+1)=9*C(H)-7*2^(H+1)  на 7 делится, т..к. С(Н) на 7 делится по предположению индукции.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years