• Доказать, что при любом натруальном n число 5^n-3^n+2n делится 4

Ответы 1

  • По мат индукции,  положим что выражение 5^n-3^n+2n делится на 4 при n, тогда оно делится на 4 при n+1. Проверка при n=1 верна, тогда переход к n+1  

    5*5^n-3*3^n+2n+2 = 5*(5^n-3^n+2n)-8n+2(3^n+1)  

    То есть надо доказать что (3^n+1) делится на 2, что верно так как 3^n дает остаток 1 при делений на 2 , тогда 3^n+1 делится на 2 , значит, и все выражение делится на 4.  

    • Автор:

      devinuqag
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years