Задача сводится к нахождению такого числа, которое делится нацело т.е. без остатка на 7, а при делении на 2, 3, 4, 5 и 6 даёт в остатке 1. Наименьшее число, которое делится без остатка на числа 2, 3, 4, 5 и 6, т.е. наименьшее общее кратное этих чисел, будет 60, Кратными являются также 60*2=120, 60*3=180, 60*4=240 т.д. Так как одно яйцо всегда оставалось, то последовательно получаем числа: 61, 121, 181, 241 и т.д. Осуществим полный перебор полученных результатов, чтобы найти наименьшее из этих чисел, кратное 7. В результате число 301 делится нацело на 7. Таким образом, наименьшим возможным числом яиц, которые женщина несла для продажи, было 301.301÷2=150 (ост.1)301÷3=100 (ост.1)301÷4=75 (ост.1)301÷5=60 (ост.1)301÷6=50 (ост.1)301÷7=43Ответ: женщина несла для продажи 301 яйцо.