• Высота конуса равна 6. Осевое сечение- треугольник с углом 120 градусов. Найдите площадь сечения, проходящего через две образующие, угол между которыми равен 30

Ответы 1

  • Т.к. в осевом сечении образуется равнобедренный треугольник ASB с углом ASB = 120° и высотой SO = 6, то можем найти SA = SB = 12 (из прямоугольного треугольника ASO, в котором угол SAO = 30°).

    Т.е. длина образующих конуса равна 12, а площадь треугольника образованного двумя образующими, между которыми угол в 30° равна:

    S=\frac{1}{2} *12*12*sin30°=36

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years