Предмет:
МатематикаАвтор:
kennaАвтор:
willoqsvАвтор:
lukaОтвет:
Пошаговое объяснение:
2xydy+dx=y²dx
2xydy=y²dx-dx
2xydy=(y²-1)dx
dy *2y/(y²-1)=dx/x
переменные разделились, можно интегрировать независимо
∫2ydy/(y²-1)=∫dx/x
∫2ydy/(y²-1)=∫dy²/(y²-1)=∫d(y²-1)/(y²-1)=ln|y²-1| +C
∫dx/x=ln|x|+C
ln|y²-1|=ln|x|+C
ln|y²-1|=ln|Cx|
y²-1=Сх
y=√(Cx+2xydy+dx=y²dx
2xydy=y²dx-dx
2xydy=(y²-1)dx
dy *2y/(y²-1)=dx/x
переменные разделились, можно интегрировать независимо
∫2ydy/(y²-1)=∫dx/x
∫2ydy/(y²-1)=∫dy²/(y²-1)=∫d(y²-1)/(y²-1)=ln|y²-1| +C
∫dx/x=ln|x|+C
ln|y²-1|=ln|x|+C
ln|y²-1|=ln|Cx|
y²-1=Сх
y=√(Cx+1)
Автор:
timoteoi2zhДобавить свой ответ
Предмет:
Русский языкАвтор:
nicodemoОтветов:
Смотреть
Предмет:
Русский языкАвтор:
spottygnwdОтветов:
Смотреть
Предмет:
Английский языкАвтор:
redbulllaflОтветов:
Смотреть
Предмет:
МатематикаАвтор:
charleedunlapОтветов:
Смотреть