f ( x ) = 2 * x ^ 4 - 4 * x ^ 3 + x . Найдем f \' ( 2 ). f \' ( x ) = ( 2 * x ^ 4 - 4 * x ^ 3 + x ) \' = ( 2 * x ^ 4 ) \' - ( 4 * x ^ 3 ) \' + x \' = 2 * ( x ^ 4 ) \' - 4 * ( x ^ 3 ) \' + x \' = 2 * 4 * x ^ ( 4 - 1 ) - 4 * 3 * x ^ ( 3 - 1 ) + 1 = 8 * x ^ 3 - 12 * x ^ 2 + 1 ; f \' ( 2 ) = 8 * 2 ^ 3 - 12 * 2 ^ 2 + 1 = 2 ^ 2 * ( 8 * 2 - 12 ) + 1 = 4 * ( 16 - 12 ) + 1 = 4 * 4 + 1 = 16 + 1 ; Ответ: f \' ( 2 ) = 1.