а) (f(x))\' = (2 * tgx)\' = 2 * 1 / cos ^2(x) = 2 /cos^2(x);(f(-3π/4)\' = 2 / cos^2(-3π/4) = 2 * (- √2/2)^2 = 2 *2 / 4 =1;б) (f(x))\' = ((4x+1)/(x+3))\' = ((4x + 3)\' * (x+3) - (4x +3) * (x+3)) / (x + 3)^2 =( 4 * (x+3) -(4x +3))^2 = 9 /(x+3)^2;(f(-2))\' = 9 / (-2 + 3)^2 = 9;в) (f(x))\' = = 1/2 * 1/√(4x - 7);(f(0))\' = 1/2 * 1/√(4 * 0 -7) - производная не существует;г) (f(x))\' = (sin(3x-π/4)) = -3 * cos (3x - π/4);(f(π/4))\' = -3 * cos( 3π/4 - π/4) = -3 * 0 = 0;д) (f(π/24))\' = 1/cos^2(π/4) = 4/2 =2