Предмет:
МатематикаАвтор:
анонимАвтор:
nathaliaodomДля решения данной задачи необходимо вспомнить:
Иногда геометрические задачи для своего решения требуют дополнительные построения, позволяющие задействовать свойства более простых фигур, образовавшихся в результате этих построений.
Пусть дана трапеция АВСD с основаниями ВС = 1 и АD = 17, точка М – середина стороны АВ, К – середина стороны СD, МК – средняя линия трапеции, АС – диагональ трапеции, МК пересекает АС в точке Р.
Чтобы найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей, рассмотрим получившийся угол АСD.
Определение длины отрезкаЧерез концы отрезков СК = КD, расположенных на стороне угла АСD, проведены МК и АD. Они параллельны, то есть МК | | АD по свойству средней линии трапеции. Тогда по теореме Фалеса на другой стороне угла эти прямые отсекут равные отрезки: АР = РС. Получается, что РК – средняя линия треугольника АСD, которая равна половине его основания:
РК = АD/2;
РК = 17/2 = 8,5.
Точка Р, образовавшаяся при пересечении диагональю АС средней линии МК, делит МК на две неравные части: МК = МР + КР.
По свойству средней линии трапеции:
МК = (ВС + АD) : 2;
МК = (1 + 17) : 2 = 9, тогда
МР = МК – КР;
МР = 9 – 8,5 = 0,5.
Получается, что МР < КР, и большим из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей, будет РК = 8,5.
Ответ: больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей имеет длину 8,5.
Автор:
bogeyДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть