Предмет:
МатематикаАвтор:
анонимАвтор:
elenaj8suПо условию задачи дан прямоугольный треугольник АВС с катетами АС и ВС, гипотенузой АВ и прямым углом С:
∠С = 90°;
Обозначим длины катетов через а и b:
a = |BC|;
b = |AC|;
Известно, что:
b = 6;
и тангенс угла А равен:
tg(∠A) = √7/3;
В задаче требуется вычислить длину гипотенузы прямоугольного треугольника АВС.
Запись уравнения по условию задачиДля решения задачи:
Воспользуемся далее тем, что косинус угла равен отношению длин прилежащего катета и гипотенузы:
cos(∠А) = |AС| / |АВ| = b / c;
Синус угла равен отношению длин противолежащего катета и гипотенузы:
sin(∠А) = |BС| / |АВ| = a / c;
Соответственно, получаем:
c = b / cos(∠А);
a = c * sin(∠А) = b * sin(∠А) / cos(∠А) = b * tg(∠А);
Далее, воспользуемся тригонометрическим равенством:
cos(∠А) = 1 / √(1 + tg2(∠А));
Получаем:
c = b / cos(∠А) = b * √(1 + tg2(∠А));
Вычисление длины гипотенузы прямоугольного треугольника АВСПодставляя исходные данные задачи в полученную формулу для гипотенузы, находим:
c = b * √(1 + tg2(∠А)) = 6 * √(1 + (√7/3)2)
с = 6 * 4/3 = 8;
Проверка.
a = b * tg(∠А) = 6 * √7/3 = 2 * √7;
Теорема Пифагора выполняется:
а^2 + b^2 = (2 * √7)^2 + 6^2 = 28 + 36 = 64 = с^2
Ответ: длина гипотенузы равна 8 см.
Автор:
zionmosleyДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть