• Составьте уравнение касательной к графику функции y=9x^2-6x-2,в точке с абсциссой х0=1

Ответы 2

  • уравнение касательной к графику функцииf(x)=-tg(3x+pi/3)-3 в точке с абсциссой х0=7pi/36
  • Для составления уравнения касательной, найдем производную данной функции, а также значение производной и самой функции в точке абсциссой х0 = 1.

    Находим производную данной функции y = 9x^2 - 6x - 2:

    у\' = (9x^2 - 6x - 2)\' = 18x - 6.

    Находим значение найденной производной в точке х0 = 1:

    у\'(1) = 18 * 1 - 6 = 12.

    Находим значение функции y = 9x^2 - 6x - 2 в точке х0 = 1:

    у(1) = 9* 1^2 - 6 * 1 - 2 = 9 - 6 - 2 = 9 - 8 = 1.

    Записываем уравнение касательной:

    у = 12(х - 1) + 1;

    у = 12х - 12 + 1;

    у = 12х - 11.

    Ответ: искомое уравнение касательной у = 12х - 11.

     

    • Автор:

      eric226
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years