Предмет:
МатематикаАвтор:
анонимДан ∆АВС с катетами АВ и АС, углом А = 90° и гипотенузой ВС. Длина AВ равна 6:
|AВ| = 6;
и угол В равен 30°. Тогда:
sin(∠В) = 1/2;
cos(∠В) = √3/2;
Воспользуемся тем, что косинус угла равен отношению длин прилежащего катета и гипотенузы, а синус угла равен отношению длин противолежащего катета и гипотенузы:
cos(∠В) = |AВ| / |ВС|;
sin(∠В) = |AC| / |ВС|;
Получаем:
cos(∠В) = 6 / |ВС| ⟹ |ВС| = 6 * 2 / √3 = 4 * √3;
sin(∠В) = |AC| / |ВС| ⟹ |АС| = ½ * (4 * √3) = 2 * √3;
Ответ: другие стороны 2√3 и 4√3
Автор:
boooezqДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть