Предмет:
МатематикаАвтор:
анонимМы должны решить полное квадратное уравнения 9x^2 + 2x - 1/3 = 0.
Подобные уравнения решаются с помощью нахождения дискриминанта.
Давайте вспомним формулу для его нахождения.
D = b^2 - 4ac;
Вычислим дискриминант для нашего уравнения.
D = 2^2 - 4 * 9 * (-1/3) = 4 + 4 * 3 = 4 + 12 = 16;
Ищем корни квадратного уравнения используя формулы:
x1 = (-b + √D)/2a =(-2 + √16)/2 * 9 = (-2 + 4)/18 = 2/18 = 1/9;
x2 = (-b - √D)/2a = (-2 - √16)/2 * 9 = (-2 - 4)/18 = -6/18 = -1/3.
Ответ: x = 1/9 и x = -1/3 корни уравнения.
Автор:
dillon8Добавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть