• Некоторое натуральное число AA поделили с остатком на 3, 18 и на 24. Сумма этих трех остатков оказалась равна 27. Найдите

Ответы 1

  • Обозначим остатки от деления числа А на 3, 18 и 24 через r1, r2, r3.

    Тогда число А можно представить в следующем виде:

    А = 3 * k + r1, где k - натуральное число,

    А = 18 * m + r2, где m - натуральное число,

    А = 24 * n + r3, где n - натуральное число.

    Сложим полученные тир равенства:

    3 * А = 3 * k + r1 + 18 * m + r2 + 24 * n + r3 =

    = 3 * k + 18 * m + 24 * n + r1 + r2 + r3.

    По условию задачи известно, что:

    r1 + r2 + r3 = 27. Следовательно, имеем:

    3 * А = 3 * k + 18 * m + 24 * n + 27,

    A = k + 6 * m + 8 * n + 9 = 3 * k + r1,

    r1 = -2 * k + 6 * m + 8 * n + 9 = 2 * (-k + 3 * m + 4 * n + 4) + 1.

    Следовательно, r1 - нечетное число. Но r1 - остаток от деления на 3,

    т.е. или 0, или 1, или 2. Отсюда вытекает, что r1 = 1.

     

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years